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The Burnside ring,B(G), of a groupG is the set of isomorphism classes of orbits ofG

together with the operations of addition and product. The addition is defined as the disjoint
union, and the product as the Cartesian product. This paper describes basic facts about this
algebraic structure and develops some applications in chemistry, as the labelling of atoms in
molecules of high symmetry and the construction of symmetry-adapted functions. For illus-
trating such applications, the concept of Burnside ring is applied to the icosahedral symmetry.
Sets of points which are isomorphic to the orbits of theI group are described and the multi-
plication table ofB(I) is obtained from the table of marks. This multiplication table allows
us to obtain an elegant labelling of the atoms of the buckminsterfullerene which is consistent
with the icosahedral symmetry. Also, we obtain complete sets of symmetry-adapted functions
for the buckminsterfullerene which span the Boyle and Parker’s icosahedral representations.

KEY WORDS: Burnside rings, group theory, symmetry-adapted functions, icosahedral
group, buckminsterfullerene

1. Introduction

The concept ofG-set (a set whose elements are interchanged by the transforma-
tions of a groupG) is widely applied in several branches of chemistry; for example, con-
struction of symmetry-adapted functions, classification and determination of the sym-
metric coordinates of a vibrating molecule, enumeration of compounds, etc. One of the
first task in working withG-sets is the enumeration of their orbits, i.e., the decomposi-
tion of theG-sets into subsets whose elements are equivalent with respect to the group
action. The table of marks is an useful tool for decomposing aG-set into orbits since it
allows us to know the number and type of orbits which are contained in aG-set start-
ing from the numbers of elements that are invariant with respect to the subgroups ofG.
A G-set can be considered as the sum of its orbits. The direct product of two orbits is a
G-set which can be decomposed into orbits. Thus, we can define the multiplication table
of the orbits of a group as that containing the decomposition of the products into orbits.
Table of marks is an essential tool for the attainment of such multiplication table.

Burnside ring is an algebraic structure which raises when we introduce the op-
erations of product and sum in the complete set of isomorphism classes of orbits of a
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finite group. It is an interesting concept which until now has not been used beyond the
boundaries of pure algebra.

2. Burnside rings

Let G be a finite group. The setS is said to be aG-set if to eachg ∈ G and
eachx ∈ S there corresponds an elementgx ∈ S, such that 1x = x (where 1 is the
identity element ofG) andf (hx) = (f h)x for all f, h ∈ G [1]. Two G-setsS andT
are isomorphic with respect to the group action (denoted byS ∼= T ) if there exists a
bijectionφ : S → T such thatgφ(x) = φ(gx) for all x ∈ S andg ∈ G.

For each elementx in S, its orbitGx = {gx: g ∈ G} is the smallerG-set contain-
ing x. Two elementsx andy of S belong to the same orbit if there exists an elementg

of G such thaty = gx. EveryG-setS can be partitioned into a disjoint union of orbits.
A G-set consisting of a single orbit is called transitive.

The stabiliserGx of an elementx of S is the subset ofG which fix x, i.e.,Gx =
{g ∈ G: gx = x}. For anyx ∈ S, the stabiliserGx is a subgroup ofG. If x andy are
two elements ofS belonging to the same orbit, the stabilisersGx andGy are conjugated
subgroups,Gy = gGxg

−1, wherey = gx. The stabilisers of the elements of an orbit
form a complete conjugacy class of subgroups ofG.

For any subgroupH of G, the set of left cosets ofH in G, given byG/H =
{gH : g ∈ G}, is a transitiveG-set under theG-action given byf (gH) = (fg)H . In
this case, the stabiliser ofgH is gHg−1. For any elementx of aG-setS the orbit ofx is
isomorphic toG/Gx.

LetH andK be subgroups ofG, the setsG/H andG/K are isomorphicG-sets if
and only ifH andK are conjugated subgroups.

Let � = {G1(= {1}),G2,G3, . . . ,Gs(= G)} be a full set of nonconjugated sub-
groups ofG. The set of transitiveG-sets{G/Gi: i = 1,2, . . . , s} is a complete set of
orbits. This means that everyG-setS is isomorphic to a disjoint union of such orbits:

S ∼=
•⋃
i

ai(G/Gi), (1)

whereGi ranges over all elements of� andai is the number of times that the orbitG/Gi

appears in the decomposition ofS. The coefficientsai are uniquely determined and can
be obtained as solutions of the system of linear equations [2]:

s∑
i=1

Mjiai = bj , j = 1,2, . . . , s. (2)

HereMji is the number of elements inG/Gi which are fixed points of the subgroupGj ,
andbj is the number of elements inS which are fixed points ofGj , where bothGi and
Gj run through the set�.
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The square matrix of dimensions formed by the numbersMji is called the table
of marks of theG group. This matrix is nonsingular, hence we can to obtain its inverse
M−1 which is known as the Burnside matrix. From equation (2) we obtain:

ai =
s∑

j=1

(
M−1

)
ij
bj , i = 1,2, . . . , s, (3)

where(M−1)ij is theij entry ofM−1.
Let S andT be twoG-sets. The Cartesian product ofS andT , denoted byS × T ,

is the set of all ordered pairs(x, y) wherex ∈ S andy ∈ T ; i.e., S × T = {(x, y):
x ∈ S, y ∈ T }. The action ofG on S × T is given byg(x, y) = (g(x), g(y)), for any
g ∈ G and any(x, y) ∈ S × T . Sinceg(x) ∈ S andg(y) ∈ T , S × T is aG-set.

The Cartesian product of theG-setsG/Gi andG/Gj is aG-set, then it is isomor-
phic to a disjoint union of orbits:

(G/Gi)× (G/Gj) ∼=
•⋃
k

nij,k(G/Gk), (4)

whereGk ranges over all elements of�. If Gl is a subgroup ofG the number of fixed
points ofGl in G/Gi andG/Gj areMli andMlj , respectively. Then the number of fixed
points ofGl in (G/Gi)× (G/Gj) is MliMlj . By applying equation (3), we obtain:

nij,k =
∑
l

(
M−1

)
kl
MliMlj . (5)

The Burnside ringB(G) of the groupG is defined by [3]

B(G) =
{

s∑
i=1

ai(G/Gi): ai ∈ Z

}
, (6)

whereZ is the set of integer numbers. The Burnside ring is a commutative ring with
identity G/Gs , where the sum(G/Gi) + (G/Gj ) is the disjoint union ofG/Gi and
G/Gj , and the product(G/Gi) · (G/Gj) is the Cartesian product ofG/Gi andG/Gj ,
i.e.,

(G/Gi)+ (G/Gj )= (G/Gi) ∪̇ (G/Gj),

(G/Gi) · (G/Gj )= (G/Gi)× (G/Gj).
(7)

From equations (6), (8) and (9) we conclude that everyG-setS is isomorphic to an
element ofB(G):

S ∼=
∑
i

ai(G/Gi). (8)



108 E.M. Torres / Burnside rings

3. Representations of the group G generated by G-sets

By the action of the elements ofG, a G-setS affords a permutation representa-
tion � of G. According to equation (1),� can be reduced as

� =
∑
i

ai�i, (9)

where�i is the transitive permutation representation generated byG/Gi . Each ele-
mentg ∈ G is represented in�i by a permutation matrix of dimension|G|/|Gi| whose
elements are given by

g(i)
xy =

{
1, if gx = y,

0, if gx �= y,
(10)

for any x, y ∈ G/Gi. The representations�s and�1 are the identity and the regular
representations, respectively.

The elements of an orbitG/Gi can be combined linearly in order to obtain basis
functions of the irreducible representations (IR) of the groupG which are contained in
the representation�i. Thus, if the IR� is contained in�i, we can write theγ -basis
vector of� as

|�γ 〉 =
∑
x

|x〉〈x|�γ 〉, (11)

where the summation extends over all the elementsx ∈ G/Gi . Usually the coefficients
〈x|�γ 〉 are obtained by using the projection operator method [4]. However, if the number
of elements ofG is high, this method is very tedious. In addition, if an IR is contained
more than once in�i , the different sets of basis functions of such IR obtained with the
projection operator method are, in general, no-orthogonal.

The Cartesian product(G/Gi)× (G/Gj) affords a representation�i ×�j , which
according to equation (4) can be reduced as

�i ×�j =
∑
k

nij,k�k. (12)

Each elementg ∈ G is represented in�i × �j by a permutation matrix whose
elements are

g
(i×j)
(u,v),(w,x) =

{
1, if g(u, v) = (w, x),

0, if g(u, v) �= (w, x),
(13)

for anyu,w ∈ G/Gi andv, x ∈ G/Gj . According to equation (10), equation (13) is
equivalent to

g
(i×j)
(u,v),(w,x) =

{
1, if g(u) = w andg(v) = x,

0, if g(u) �= w or g(v) �= x.
(14)
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From equations (14) and (10) we obtain:

g
(i×j)
(u,v),(w,x) = gi

uwg
j
vx. (15)

Hence,�i ×�j is the Kronecker product of the representations�i and�j [3].
If the orbit G/Gk is contained in the product(G/Gi) × (G/Gj) we can obtain

symmetry-adapted functions forG/Gk by coupling the symmetry-adapted functions for
G/Gi andG/Gj . In fact, let�,�′ and�′′ be irreducible representation ofG such that
� ∈ �k, �

′ ∈ �i, �
′′ ∈ �j and� ∈ �′ ×�′′, then theγ -basis vector of� can be written

as ∣∣�γ ;�′, �′′〉 =∑
γ ′,γ ′′

∑
x,y

∣∣(x, y)〉〈x∣∣�′γ ′〉〈y∣∣�′′γ ′′〉〈�′γ ′�′′γ ′′∣∣�γ 〉, (16)

wherex andy run over the elements ofG/Gi andG/Gj , respectively, and〈�′γ ′�′′γ ′′|
�γ 〉 are Clebsch–Gordan coefficients.

4. Orbits of the icosahedral rotation group (I )

Figure 1 shows the subgroup lattice for theI group. As we see, there exist nine
icosahedral orbits. In order to simplify the notation, the icosahedral orbitI/Gk (where
Gk is a subgroup ofI ) will be denoted as(Gk). The icosahedral orbits are isomorphic
to I -sets which can be obtained from a regular icosahedron (see table 1). The orbits
(D2), (D3), (D5) and(T ) cannot be isomorphic to sets containing single elements [5]
and, hence, for such orbits we have usedI -sets whose elements are sets containing
more than one element. Figures 2 and 3 show the orbits(C5) and (T ), respectively.

Figure 1. Subgroup lattice of theI group.
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Table 1
Orbits of theI group.

Orbit Description

(I ) A single point in the origin of coordinates
(T ) The set of three orthogonal pairs of antipodal edge midpoints of the icosahedron
(D5) The set of pairs of antipodal vertices of the icosahedron
(D3) The set of pairs of antipodal face midpoints of the icosahedron
(D2) The set of pairs of antipodal edge midpoints of the icosahedron
(C5) The set of vertices of the icosahedron
(C3) The set of face midpoints of the icosahedron
(C2) The set of edge midpoints of the icosahedron
(C1) The set of vertices of a truncated icosahedron

Figure 2. Numbering of the icosahedral vertices.

Table 2 contains the characters of the representations of the icosahedral group generated
by the above orbits and the reductions into irreducible representations. The permutation
representation of the generators of theI group which are spanned by the orbits(T ) and
(C5) are shown in table 3.

From the table of marks for theI group [6] and its inverse, shown in tables 4 and 5,
respectively, and using equations (4) and (5), we have obtained the multiplication table
for the icosahedral Burnside ringB(I) shown in table 6.

A simple application of such multiplication table is the labelling of elements of
I -sets. For example,(T ) · (T ) ∼= (T )+ (C3), where it is evident that

(T )∼= {(a, a): a ∈ (T )
}
,

(C3)∼=
{
(a, b): a �= b; a, b ∈ (T )

}
.
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Figure 3. Elements of the orbit(T ).
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Table 2
Characters and reduction of the transitive permutation representations of theI group.

I E 12C5 12C2
5 20C3 15C2 Reduction

�I 1 1 1 1 1 A

�T 5 0 0 2 1 A+G

�D5 6 1 1 0 2 A+H

�D3 10 0 0 1 2 A+G+H

�D2 15 0 0 0 3 A+G+ 2H
�C5 12 2 2 0 0 A+ T1+ T2 +H

�C3 20 0 0 2 0 A+ T1+ T2 + 2G+H

�C2 30 0 0 0 2 A+ T1+ T2 + 2G+ 3H
�C1 60 0 0 0 0 A+ 3T1 + 3T2 + 4G + 5H

Table 3
Permutation representations�C5 and�T for the generators of

theI group.

�C5 �T

C
1,12
5 (1)(2 6 5 4 3)(7 11 10 9 8 7) (1 4 5 2 3)

C
1,4,3
3 (1 4 3)(2 5 8)(6 9 7)(10 12 11) (1)(2 4 3)(5)

C
1,2
2 (1 2)(3 6)(4 11)(5 7)(8 10)(9 12) (1)(2 3)(4 5)

Table 4
Table of marks of theI group.

(I ) (T ) (D5) (D3) (C5) (D2) (C3) (C2) (C1)

I 1 0 0 0 0 0 0 0 0
T 1 1 0 0 0 0 0 0 0
D5 1 0 1 0 0 0 0 0 0
D3 1 0 0 1 0 0 0 0 0
C5 1 0 1 0 2 0 0 0 0
D2 1 1 0 0 0 3 0 0 0
C3 1 2 0 1 0 0 2 0 0
C2 1 1 2 2 0 3 0 2 0
C1 1 5 6 10 12 15 20 30 60

This means that each face of the icosahedron can be labelled by(a, b), where
a �= b, 1� a � 5 and 1� b � 5 (see figure 4).

According to table 6, the triple product of(T ) · (T ) · (T ) can be decomposed into
five orbits:(T ) · (T ) · (T ) ∼= (T )+ 3(C3)+ (C1), where it is easy to see that

(T )∼= {(a, a, a): a ∈ (T )
}
,

(C3)∼=
{
(a, a, b): a �= b; a, b ∈ (T )

}
,

(C3)∼=
{
(a, b, a): a �= b; a, b ∈ (T )

}
,
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Table 5
Inverse matrix of the table of marks of theI group.

I T D5 D3 C5 D2 C3 C2 C1

(I ) 1 0 0 0 0 0 0 0 0
(T ) −1 1 0 0 0 0 0 0 0
(D5) −1 0 1 0 0 0 0 0 0
(D3) −1 0 0 1 0 0 0 0 0
(C5) 0 0 −1/2 0 1/2 0 0 0 0
(D2) 0 −1/3 0 0 0 1/3 0 0 0
(C3) 1 −1 0 −1/2 0 0 1/2 0 0
(C2) 2 0 −1 −1 0 −1/2 0 1/2 0
(C1) −1 1/3 1/2 1/2 −1/10 1/6 −1/6 −1/4 1/60

Figure 4. Labelling of the faces of the icosahedron.

(C3)∼=
{
(b, a, a): a �= b; a, b ∈ (T )

}
,

(C1)∼=
{
(a, b, c): a �= b �= c; a �= c; a, b, c ∈ (T )

}
.

Thus, each vertex of the truncated icosahedron can be labelled by(a, b, c), wherea �=
b �= c, a �= c,1 � a � 5,1 � b � 5 and 1� c � 5 (see figure 5). According to this,
the regular representation ofI,�C1 can be obtained from�T .

At last, the orbit(C1) is isomorphic to the product(T ) · (C5). Then, since(T ) ·
(C5) = {(a, b): a ∈ (T ), b ∈ (C5)}, every vertex of a truncated icosahedron can be
labelled by(a, b), where 1� a � 5 and 1� b � 12 (see figure 6).
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Figure 5. Labelling of the elements of (C1) by using the elements of(T ).

Figure 6. Labelling of the elements of (C1) by using the elements of (C5) and (T ).

5. Symmetry-adapted functions for the C60 molecule

Because of the high order of the icosahedral groupI , the attainment of icosahedral
symmetry-adapted functions by direct application of the projection operators method is
a laborious task. Therefore, any alternative method introducing some simplification is
well received. Here we show how the symmetry-adapted functions for the C60 molecule
can be obtained by using the concepts developed in the above sections.
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Table 7
Symmetry-adapted functions for the orbit(C5).

ψAa = (1/2
√

3)(v1+ v2 + v3+ v4 + v5+ v6 + v7 + v8 + v9 + v10+ v11+ v12)

ψT1x = (1/2
√
(+ 2)(v1 − v2+(v4 +(v5 −(v7 + v9 −(v11− v12)

ψT1y = (1/2
√
(+ 2)((v3 + v4 − v5−(v6 + v7 +(v8 −(v10− v11)

ψT1z = (1/2
√
(+ 2)((v1 +(v2 + v3 + v6 − v8−(v9 − v10−(v12)

ψT2x = (1/2
√
(+ 2)((v1 −(v2 − v4 − v5+ v7 +(v9 + v11−(v12)

ψT2y = (1/2
√
(+ 2)(−v3 +(v4 −(v5 + v6 +(v7 − v8 + v10−(v11)

ψT2z = (1/2
√
(+ 2)(−v1 − v2 +(v3 +(v6 −(v8 + v9−(v10+ v12)

ψHϑ = (1/2
√

2)(v1 + v2− v3 − v6− v8 + v9 − v10+ v12)

ψHε = (1/2
√

6)(−v1 − v2 − v3 + 2v4 + 2v5 − v6 + 2v7 − v8 − v9− v10+ 2v11− v12)

ψHx = (1/2)(v3 − v6− v8 + v10)

ψHy = (1/2)(v1 − v2 − v9+ v12)

ψHz = (1/2)(v4 − v5 − v7 + v11)

Note.( = (1+√5)/2 is the golden number.

Table 8
Symmetry-adapted functions for the orbit(T ).

ϕAa = (1/
√

5)(v1+ v2 + v3+ v4 + v5)

ϕGa = (1/2
√

5)(4v1 − v2− v3 − v4− v5)

ϕGx = (1/2)(v2 − v3+ v4 − v5)

ϕGy = (1/2)(−v2 + v3 + v4 − v5)

ϕGz = (1/2)(v2 + v3 − v4− v5)

Using equation (16) and bearing in mind the relation(T ) · (C5) ∼= (C1) (see
table 6) we can obtain mutually orthogonal symmetry-adapted functions for(C1)

by coupling the symmetry-adapted functions of(T ) and (C5). For this purpose we
have obtained symmetry-adapted functions for(T ) and (C5) by using the results ob-
tained by Boyle and Parker in their paper on a vibrating icosahedral cage [7] (see
tables 7 and 8). In order to use equation (16) we have employed the coupling coefficients
which were obtained by Fowler and Ceulemans [8] for the single-valued irreducible
representations of theI group based on the symmetry functions of Boyle and Parker.
The symmetry functions for the C60 molecule thus obtained are basis functions of the
matrix representation of theI group given in the appendix to the work by Boyle and
Parker [7]. Table 9 contains the functions for the representationH obtained by coupling
the symmetry-adapted functions for(C5) and(T ) which are base of the representations
T1 andG, respectively. By reasons of space the resting functions are not shown in this
paper, but are available upon request.

Bearing in mind the relation(T ) · (T ) · (T ) ∼= (T )+ 3(C3)+ (C1), where(C1) ∼=
{(a, b, c): a �= b �= c; a �= c; a, b, c ∈ (T )}, we could obtain symmetry-adapted
functions for(C1) from those of(T ). However, the functions thus obtained have the
disadvantage that, as occurs with the projection operator method, the different sets of
functions belonging to the same irreducible representation are non-orthogonal.
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Table 9
Functions|Hγ ;H,G〉, γ = ϑ, ε, x, y, z.

|Hϑ ;H,G〉 = (1/8
√

15)(−6v1
1 − v2

1 + 4v3
1 + 4v4

1 − v5
1 − 6v1

2 + 4v2
2 − v3

2 − v4
2 + 4v5

2 + 6v1
3

+ v2
3 − 4v3

3 + v4
3 − 4v5

3 − 5v2
4 − 5v3

4 + 5v4
4 + 5v5

4 + 5v2
5 + 5v3

5 − 5v4
5 − 5v5

5

+ 6v1
6 − 4v2

6 + v3
6 − 4v4

6 + v5
6 + 5v2

7 + 5v3
7 − 5v4

7 − 5v5
7 + 6v1

8 − 4v2
8 + v3

8 − 4v4
8

+ v5
8 − 6v1

9 + 4v2
9 − v3

9 − v4
9 + 4v5

9 + 6v1
10+ v2

10− 4v3
10+ v4

10− 4v5
10− 5v2

11

− 5v3
11+ 5v4

11+ 5v5
11− 6v1

12− v2
12+ 4v3

12+ 4v4
12− v5

12)

|Hε;H,G〉 = (1/8
√

5)(2v1
1 − 3v2

1 + 2v3
1 + 2v4

1 − 3v5
1 + 2v1

2 + 2v2
2 − 3v3

2 − 3v4
2 + 2v5

2 + 2v1
3

− 3v2
3 + 2v3

3 − 3v4
3 + 2v5

3 − 4v1
4 + v2

4 + v3
4 + v4

4 + v5
4 − 4v1

5 + v2
5 + v3

5 + v4
5 + v5

5

+ 2v1
6 + 2v2

6 − 3v3
6 + 2v4

6 − 3v5
6 − 4v1

7 + v2
7 + v3

7 + v4
7 + v5

7 + 2v1
8 + 2v2

8 − 3v3
8

+ 2v4
8 − 3v5

8 + 2v1
9 + 2v2

9 − 3v3
9 − 3v4

9 + 2v5
9 + 2v1

10− 3v2
10+ 2v3

10− 3v4
10+ 2v5

10

− 4v1
11+ v2

11+ v3
11+ v4

11+ v5
11+ 2v1

12− 3v2
12+ 2v3

12+ 2v4
12− 3v5

12)

|Hx ;H,G〉 = (1/4
√

30)(−5v3
1 + 5v4

1 + 5v2
2 − 5v5

2 + 4v1
3 − v2

3 − v3
3 − v4

3 − v5
3 − 5v4

4 + 5v5
4

− 5v2
5 + 5v3

5 − 4v1
6 + v2

6 + v3
6 + v4

6 + v5
6 − 5v2

7 + 5v3
7 − 4v1

8 + v2
8 + v3

8 + v4
8 + v5

8

+ 5v2
9 − 5v5

9 + 4v1
10− v2

10− v3
10− v4

10− v5
10− 5v4

11+ 5v5
11− 5v3

12+ 5v4
12)

|Hy ;H,G〉 = (1/4
√

30)(4v1
1 − v2

1 − v3
1 − v4

1 − v5
1 − 4v1

2 + v2
2 + v3

2 + v4
2 + v5

2 − 5v3
3 + 5v5

3 − 5v2
4

+ 5v3
4 + 5v4

5 − 5v5
5 + 5v2

6 − 5v4
6 + 5v4

7 − 5v5
7 + 5v2

8 − 5v4
8 − 4v1

9 + v2
9 + v3

9 + v4
9

+ v5
9 − 5v3

10+ 5v5
10− 5v2

11+ 5v3
11+ 4v1

12− v2
12− v3

12− v4
12− v5

12)

|Hz;H,G〉 = (1/4
√

30)(−5v2
1 + 5v5

1 − 5v3
2 + 5v4

2 + 5v2
3 − 5v4

3 + 4v1
4 − v2

4 − v3
4 − v4

4 − v5
4 − 4v1

5

+ v2
5 + v3

5 + v4
5 + v5

5 + 5v3
6 − 5v5

6 − 4v1
7 + v2

7 + v3
7 + v4

7 + v5
7 + 5v3

8 − 5v5
8 − 5v3

9

+ 5v4
9 + 5v2

10− 5v4
10+ 4v1

11− v2
11− v3

11− v4
11− v5

11− 5v2
12+ 5v5

12)

6. Supplementary material

A print-out of the complete symmetry-adapted functions for the C60 molecule is
available upon request.

References

[1] J.S. Rose,A Course on Group Theory (Cambridge University Press, Cambridge, 1978).
[2] W. Hässelbarth, Theor. Chim. Acta 67 (1985) 339.
[3] C.W. Curtis and I. Reiner,Methods in Representation Theory (Wiley, New York, 1981).
[4] M. Hamermesh,Group Theory and its Applications to Physical Problems (Addison-Wesley, Reading,

MA, 1962).
[5] S. Fujita, Theor. Chim. Acta 76 (1990) 45.
[6] F. Oda, J. Algebra 236 (2001) 29.
[7] L.L. Boyle and Y.M. Parker, Mol. Phys. 39 (1980) 95.
[8] P.W. Fowler and A. Ceulemans, Mol. Phys. 54 (1985) 767.


