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The Burnside ringB(G), of a groupG is the set of isomorphism classes of orbits(f
together with the operations of addition and product. The addition is defined as the disjoint
union, and the product as the Cartesian product. This paper describes basic facts about this
algebraic structure and develops some applications in chemistry, as the labelling of atoms in
molecules of high symmetry and the construction of symmetry-adapted functions. For illus-
trating such applications, the concept of Burnside ring is applied to the icosahedral symmetry.
Sets of points which are isomorphic to the orbits of thgroup are described and the multi-
plication table ofB(7) is obtained from the table of marks. This multiplication table allows
us to obtain an elegant labelling of the atoms of the buckminsterfullerene which is consistent
with the icosahedral symmetry. Also, we obtain complete sets of symmetry-adapted functions
for the buckminsterfullerene which span the Boyle and Parker’s icosahedral representations.

KEY WORDS: Burnside rings, group theory, symmetry-adapted functions, icosahedral
group, buckminsterfullerene

1. Introduction

The concept of5-set (a set whose elements are interchanged by the transforma-
tions of a groups) is widely applied in several branches of chemistry; for example, con-
struction of symmetry-adapted functions, classification and determination of the sym-
metric coordinates of a vibrating molecule, enumeration of compounds, etc. One of the
first task in working withG-sets is the enumeration of their orbits, i.e., the decomposi-
tion of the G-sets into subsets whose elements are equivalent with respect to the group
action. The table of marks is an useful tool for decomposidgset into orbits since it
allows us to know the number and type of orbits which are containeddrsat start-
ing from the numbers of elements that are invariant with respect to the subgroGps of
A G-set can be considered as the sum of its orbits. The direct product of two orbits is a
G-set which can be decomposed into orbits. Thus, we can define the multiplication table
of the orbits of a group as that containing the decomposition of the products into orbits.
Table of marks is an essential tool for the attainment of such multiplication table.

Burnside ring is an algebraic structure which raises when we introduce the op-
erations of product and sum in the complete set of isomorphism classes of orbits of a
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106 E.M. Torres/ Burnside rings

finite group. It is an interesting concept which until now has not been used beyond the
boundaries of pure algebra.

2. Burnsiderings

Let G be a finite group. The set is said to be aG-set if to eachg € G and
eachx € S there corresponds an element € S, such that £ = x (where 1 is the
identity element oiG) and f (hx) = (fh)x for all f,h € G [1]. Two G-setsS andT
are isomorphic with respect to the group action (denoted 8 T) if there exists a
bijection¢ : S — T such thatg¢(x) = ¢(gx) forall x € S andg € G.

For each element in S, its orbit Gx = {gx: g € G} is the smalleiG-set contain-
ing x. Two elements: andy of S belong to the same orbit if there exists an elemgent
of G such thaty = gx. EveryG-setS can be partitioned into a disjoint union of orbits.
A G-set consisting of a single orbit is called transitive.

The stabiliserG, of an elemeni of S is the subset ofF which fix x, i.e.,G, =
{g € G: gx = x}. Foranyx € §, the stabiliseiG, is a subgroup ot;. If x andy are
two elements of belonging to the same orbit, the stabilisérsandG, are conjugated
subgroupsG, = gG,g 1, wherey = gx. The stabilisers of the elements of an orbit
form a complete conjugacy class of subgroups;of

For any subgroud of G, the set of left cosets off in G, given byG/H =
{gH: g € G}, is atransitiveG-set under thé5-action given byf(gH) = (fg)H. In
this case, the stabiliser gff is g Hg~. For any element of a G-setS the orbit ofx is
isomorphic toG/G,.

Let H andK be subgroups ofs, the setsG/H andG/K are isomorphidas-sets if
and only if H andK are conjugated subgroups.

LetR = {G1(= {1}), G2, G3, ..., G,(= G)} be a full set of nonconjugated sub-
groups ofG. The set of transitive5-sets{G/G;: i = 1,2, ...,s} is a complete set of
orbits. This means that evefy-setS is isomorphic to a disjoint union of such orbits:

s=Ja(G/6y, (1)

whereG, ranges over all elements fifanda; is the number of times that the orlait/ G;
appears in the decomposition §f The coefficients; are uniquely determined and can
be obtained as solutions of the system of linear equations [2]:

ZMjiai=bja j=1,2...,s. 2)
i=1

HereM;; is the number of elements @&/ G; which are fixed points of the subgrodp;,
andb; is the number of elements siwhich are fixed points ot ;, where bothG; and
G run through the sekt.
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The square matrix of dimensionformed by the numbers/;; is called the table
of marks of theG group. This matrix is nonsingular, hence we can to obtain its inverse
M~ which is known as the Burnside matrix. From equation (2) we obtain:

ai:Z(Mil)ijbj’ i=1,2,...,S, (3)
j=1

where(M1);; is theij entry of M1,

Let S andT be twoG-sets. The Cartesian product$fandT, denoted by x T,
is the set of all ordered pairs, y) wherex € Sandy € T;i.e.,S x T = {(x,y):
x € S,y € T}. The action ofG on § x T is given byg(x, y) = (g(x), g(y)), for any
ge Gandany(x,y) € S x T. Sinceg(x) € Sandg(y) e T, S x T isaG-set.

The Cartesian product of th@-setsG/G; andG/ G is aG-set, then it is isomor-
phic to a disjoint union of orbits:

(G/G) x (G/G ) = | Jnyu(G/ G, 4)
k

whereG, ranges over all elements . If G, is a subgroup of5 the number of fixed
points of G, in G/G; andG/ G ; areM;; andM,;, respectively. Then the number of fixed
points of G, in (G/G;) x (G/G ) is M;; M;;. By applying equation (3), we obtain:

Nijk = Z (Mil)klMliMlj- ©)
]

The Burnside ringB(G) of the groupG is defined by [3]

N

B(G)=1) a(G/G):a; €Zy, (6)

i=1

whereZ is the set of integer numbers. The Burnside ring is a commutative ring with
identity G/G,, where the sumiG/G;) + (G/G) is the disjoint union ofG/G; and
G/G;, and the productG/G;) - (G/G)) is the Cartesian product ¢/ G; andG/G,
i.e.,
(G/G) +(G/G))=(G/G)HU(G/G)),
(G/Gi)-(G/G)=(G/G) x (G/G)).

From equations (6), (8) and (9) we conclude that evergets is isomorphic to an
element ofB(G):

(7)

S%Zai(G/Gi). (8)
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3.  Representations of the group G generated by G-sets

By the action of the elements @f, a G-set S affords a permutation representa-
tion Q of G. According to equation (1X2 can be reduced as

QZZQ,'Q,‘, (9)

where Q; is the transitive permutation representation generated; bg;. Each ele-
mentg € G is represented if; by a permutation matrix of dimensidd:|/|G;| whose
elements are given by

(i>_{1’ gx =y, (10)

8xy = 0, ifgx##y,

for anyx,y € G/G;. The representation®; and2; are the identity and the regular
representations, respectively.

The elements of an orb&/G; can be combined linearly in order to obtain basis
functions of the irreducible representations (IR) of the grawpvhich are contained in
the representatiof;. Thus, if the IRT is contained in%2;, we can write the/-basis
vector ofl" as

ITy) =Y [x)(x[Ty), (11)

where the summation extends over all the elemerdsG/G;. Usually the coefficients
(x|T"y) are obtained by using the projection operator method [4]. However, if the number
of elements ofG is high, this method is very tedious. In addition, if an IR is contained
more than once if; , the different sets of basis functions of such IR obtained with the
projection operator method are, in general, no-orthogonal.

The Cartesian produ¢tG/G;) x (G/G) affords a representatia; x 2;, which
according to equation (4) can be reduced as

Qi X Qj = Znij,kszk- (12)
k

Each elemeng € G is represented i®; x ©; by a permutation matrix whose
elements are

(ixj) {l, if g(u,v) = (w,x), (13)

Swowo = N0, if g(u,v) # (w. ),

foranyu,w € G/G; andv,x € G/G,. According to equation (10), equation (13) is
equivalent to

_ 14
v, .0 0, if g(u)# worg() # x. -
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From equations (14) and (10) we obtain:
géli?(vﬁ),(w,x) = g;wglj)x (15)
Hence,2; x Q; is the Kronecker product of the representatiohsand2; [3].

If the orbit G/G, is contained in the produdiG/G;) x (G/G ;) we can obtain
symmetry-adapted functions far/ G by coupling the symmetry-adapted functions for
G/G; andG/G;. Infact, letI', I'" andT"” be irreducible representation 6f such that
I'eQ,IMeQ;, T e Qjandl’ e I x I'”, then they -basis vector of* can be written
as

|F)/; 1—-/’ l—-//> — Z Z |(X, y))(x|F/)/><y|F”y”)(F/yT”y”|Fy), (16)

V/’VH X,y

wherex andy run over the elements @/ G; andG/ G, respectively, andly'T"y”|
I'y) are Clebsch—Gordan coefficients.

4. Orbitsof theicosahedral rotation group (1)

Figure 1 shows the subgroup lattice for thgroup. As we see, there exist nine
icosahedral orbits. In order to simplify the notation, the icosahedral dylgit, (where
G is a subgroup of) will be denoted asG,). The icosahedral orbits are isomorphic
to 7-sets which can be obtained from a regular icosahedron (see table 1). The orbits
(D), (D3), (Ds) and(T) cannot be isomorphic to sets containing single elements [5]
and, hence, for such orbits we have udedets whose elements are sets containing
more than one element. Figures 2 and 3 show the o¢bis and (T), respectively.

I

Ds T D,
D,

C5 C3
G
G

Figure 1. Subgroup lattice of thiegroup.
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Table 1
Orbits of thel group.

Orbit

Description

0))

(T)

(Ds)
(D3)
(D2)
(Cs)
(C3)
(C)
(Cp

A single point in the origin of coordinates

The set of three orthogonal pairs of antipodal edge midpoints of the icosahedron
The set of pairs of antipodal vertices of the icosahedron

The set of pairs of antipodal face midpoints of the icosahedron

The set of pairs of antipodal edge midpoints of the icosahedron

The set of vertices of the icosahedron

The set of face midpoints of the icosahedron

The set of edge midpoints of the icosahedron

The set of vertices of a truncated icosahedron

Figure 2. Numbering of the icosahedral vertices.

Table 2 contains the characters of the representations of the icosahedral group generated
by the above orbits and the reductions into irreducible representations. The permutation
representation of the generators of thgroup which are spanned by the orki#) and

(Cs) are shown in table 3.

From the table of marks for thegroup [6] and its inverse, shown in tables 4 and 5,
respectively, and using equations (4) and (5), we have obtained the multiplication table
for the icosahedral Burnside rirg(1) shown in table 6.

A simple application of such multiplication table is the labelling of elements of
[-sets. For examplél) - (T) = (T) + (C3), where it is evident that

(T)={(a,a): a € ()},
(C3) = {(a,b): a#b;a,be (T}
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Table 2
Characters and reduction of the transitive permutation representationsioftbep.
I E 12cs 122 20Cc3  15C; Reduction
Q; 1 1 1 1 1 A
Qr 5 0 0 2 1 A+G
Qp. 6 1 1 0 2 A+H
Qp, 10 0 0 1 2 A+G+H
Qp, 15 0 0 0 3 A+G+2H
Qcs 12 2 2 0 0 A+T1+T+H
Qc, 20 0 0 2 0 A+T1+To+2G+H
Qc, 30 0 0 0 2 A+T1+ T +2G +3H
Qc, 60 0 0 0 0 A + 3Ty 4 3T + 4G +5H
Table 3
Permutation representatiofi-, andQy for the generators of
the I group.
QCS Qr
cgt? (1)(26543)(71110987) (14523)
c3*3 (143)(258)(697)(10 12 11) 1)(2 4 3)(5)
cy? (12)(36)411)(57)(810)(912)  (1)(23)(45)
Table 4
Table of marks of thd group.
(I) (T) (Ds) (D3) (Cs) (D2) (C3) (C2) (C1)
1 1 0 0 0 0 0 0 0 0
T 1 1 0 0 0 0 0 0 0
Ds 1 O 1 0 0 0 0 0 0
Dy 1 0 0 1 0 0 0 0 0
Ccs 1 O 1 0 2 0 0 0 0
Dy, 1 1 0 0 0 3 0 0 0
C3 1 2 0 1 0 0 2 0 0
Co 1 1 2 2 0 3 0 2 0
c1 1 5 6 10 12 15 20 30 60

This means that each face of the icosahedron can be labell€d, by, where
a#b, 1<a<5and 1< b <5 (seefigure 4).

According to table 6, the triple product ¢f) - (T') - (T) can be decomposed into
five orbits: (T") - (T) - (T) = (T) + 3(C3) + (C1), where it is easy to see that

(T)= {(a,a,a): ae (T)},
(C3)={(a,a,b): a#bja,be (T},
(C3)={(a,b,a): a #b;a,be (T},
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Table 5
Inverse matrix of the table of marks of tegroup.

1 T Ds D3 Cs Do C3 Co C1
) 1 0 0 0 0 0 0 0 0
(ry -1 1 0 0 0 0 0 0 0
(Ds) -1 0 1 0 0 0 0 0 0
(D3) -1 0 0 1 0 0 0 0 0
Cg) O 0o -1/2 0 1/2 0 0 0 0
(D) 0 -1/3 0 0 0 Y3 0 0 0
Ccy 1 -1 0 -1/2 0 0 12 0 0
(Cy) 2 0 -1 -1 0 -1/2 0 1/2 0

(cy -1 13 12 1/2 -1/10 16 -1/6 —1/4 1/60

Figure 4. Labelling of the faces of the icosahedron.

(C3) Z{(b,a,a): a#b;a,be (T},
(Cy={a.b,c): a#b+#c;a+#ciab,ce (D}

Thus, each vertex of the truncated icosahedron can be labelléd byc), wherea #
b#c,a#c,1<a<51l<b<5and 1< ¢ <5 (seefigure5). According to this,
the regular representation bf2¢, can be obtained frorf ;.

At last, the orbit(C,) is isomorphic to the produatl’) - (Cs). Then, sincgT) -
(Cs) = {(a,b): a € (T),b € (Cs)}, every vertex of a truncated icosahedron can be
labelled by(a, b), where 1< a < 5 and 1< b < 12 (see figure 6).
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(T2)09 ()
Toe  (Towt +(Co)z ©)
Tz (To)t (T2)9 + €Dz €o)
Toxt (o) + (o) (To)g T+ Cae Ca)
(Toxet (T0)9 (o)) % (o) (ID)z + (So)z )
Tot T+ (o) (o) + (€D) (To) + (€o)e (To)z (T0) + (€0) + (@) Ea)
(To)9 o)z + o)z (Io)z ©o)e o)+ S2) o)z o) + Sa) Ga)
(To)s5 (To)z + (D) (To) + (€D)z (o) + Ca) ()] (o) + (€D) (%)) €D+ (1) (1)
(TD) (%)) (€D) Ca) (5D) CEa) Sa) (1) (D (D
(T0) D) (D) €a) (5D) €aq) Ga) (1) (D
“(7) Buu apisuing ay} Jo sjoel uonedndnniy
9 9|qel



E.M. Torres/ Burnside rings 115

c

(a,b,c)

Figure 5. Labelling of the elements af{) by using the elements 6f").

(a.b)

Figure 6. Labelling of the elements af{) by using the elements of¢) and (7).

5. Symmetry-adapted functionsfor the Cgo molecule

Because of the high order of the icosahedral grbue attainment of icosahedral
symmetry-adapted functions by direct application of the projection operators method is
a laborious task. Therefore, any alternative method introducing some simplification is
well received. Here we show how the symmetry-adapted functions forghm@ecule
can be obtained by using the concepts developed in the above sections.
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Table 7
Symmetry-adapted functions for the orbiis).

Vaa = (1/2v/3)(v1 + vo + v3 + v4 + v5 + vg + v7 + vg + vg + V10 + V11 + V1D)
VU = (/279 + 2)(v1 — v2 + Pvg + Pus — Pv7 + vg — P11 —v12)

YUy = (1/2¢® + 2)(Pv3g + vg4 — v5 — Pvg + v7 + Pvg — dvyg— v11)

¥z = (/2P + 2)(Pv1 + Pz +v3 + v — vg — Prg — v10 — Pv12)

YUy = (/24P + 2)(Qvg — Pvg — vg — v5 + v7 + Pog + v11 — Pu1)

Yy = (1/2J/® + 2)(—v3 4 Pvg — Pus + ve + Pv7 — vg + v19 — Pv11)

Yy = (/24P + 2)(—v1 — v2 + Pv3 + Pvg — Pvg + vg — P10+ v12)

Vi = (1/2vV/2)(v1 + v2 — v3 — v6 — vg + v9 — V10 + V12)

Ve = (1/2V/6)(—v1 — v2 — v3 + 2v4 + 2v5 — v + 2v7 — vg — Vg — V10 + 2011 — V12)
Vix = (1/2)(v3 — ve — vg + v10)

Vay = (1/2)(vy — v2 — vg + v12)

Vh; = (1/2)(va — v5 —v7 + v11)

Note. ® = (1+ +/5)/2 is the golden number.

Table 8
Symmetry-adapted functions for the orbit).

9aa = /D)WL + 02 + 03+ v* + 05
9Ga = (1/2/5) (@ —v2 —v® —v# — %)
9Gx = (1/2)(v2 — v3+ 0% —0d)

06y = (1/2)(—v? + 13 + v* — 15)

0G; = (1/2)(1)2 + v3 — 4 v5)

Using equation (16) and bearing in mind the relatid? - (Cs) = (Cy) (see
table 6) we can obtain mutually orthogonal symmetry-adapted functiongdor
by coupling the symmetry-adapted functions (@) and (Cs). For this purpose we
have obtained symmetry-adapted functions @) and (Cs) by using the results ob-
tained by Boyle and Parker in their paper on a vibrating icosahedral cage [7] (see
tables 7 and 8). In order to use equation (16) we have employed the coupling coefficients
which were obtained by Fowler and Ceulemans [8] for the single-valued irreducible
representations of thé group based on the symmetry functions of Boyle and Parker.
The symmetry functions for thegg molecule thus obtained are basis functions of the
matrix representation of the group given in the appendix to the work by Boyle and
Parker [7]. Table 9 contains the functions for the representdfi@mbtained by coupling
the symmetry-adapted functions f@fs) and (7)) which are base of the representations
T, and G, respectively. By reasons of space the resting functions are not shown in this
paper, but are available upon request.

Bearing in mind the relatioqT’) - (T') - (T) = (T) + 3(C3) + (C1), where(C,) =
{(a,b,c): a # b # c;a # c;a,b,c € (T)}, we could obtain symmetry-adapted
functions for(C,) from those of(T). However, the functions thus obtained have the
disadvantage that, as occurs with the projection operator method, the different sets of
functions belonging to the same irreducible representation are non-orthogonal.
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Table 9
Functions Hy; H,G),y = ¢,¢,x, y, 2.

|Hy: H, G) = (1/8V15)(—6v} — v2 + 403 + 4vf — v — 603 + 402 — v3 — v] + 403 + 603
+v%—4v§+v§—4v§—5v§—5v2+5vﬁ+5v2+5v§+5vg—5v‘51—5vg
+6vé‘—4vg+vg—4vé+vg+5v$+5v%—5v§—5v?+6v%—4v§+vg—4vg

5 1 2 3 4 5 1 2 3 4 5 2
+vg — 6vg + dvg — vg — vg + dvg + Bvyg + vip — dvig t+ Vi — dvip — Svig
3 4 5 1 2 3 4 5
— Svyq + 5y + Sv7q — By — v, + 4vis + AT, — v7))

|He; H, G) = (1/8«/5)(21)% — 31)% + 2v:l3 + 21)‘11 — 3v§ + 21)% + 2v% — 31):23 — 31)‘21 + 2vg + 21)%
—3v§+2v§’—3v§+2v§—4v%+v£+v£31+vﬁ+v2—4v%+v§+vg+vé+vg
—|—2U%+2UE2~)—3U8+2Ué—3vg—4U%+U%+U§+U§+U;+2Ué+2v§—3U§
+ 20§ — 33 + 20 + 203 — 3v3 — 3vd + 2v3 + 2v] — Bvd + 3, — Ty + 203,

1 2 3 4 5 1 2 3 4 5
— 4vgy g gy gy g+ 20gp = 3up + 207, + 2075 — 3u7)

|Hy; H, G) = (1/4\/30)(—51)% + 51)‘11 + 5v§ — 5vg + 4v:3L — v% — vg — vg — vg — 5vf11 + 51)‘51>

— 502 + 503 — 4l + v2 + vd + v + v — 502 + 503 — Al + 02 + 03 + v + 0]
2 5 1 2 3 4 5 4 5 3 4
+ 5v§ — Svg + dvig — vip — Vig — V19 — Vip — DVi1 T Bviq — Svi,r + Suiy)

|Hy; H, G) = (1/4\/30)(4v% — v% — vf — vi‘ — v% — 4v% + v% + vg + vg + vg — 51)::33 + 5v§ — 5v‘21

+ 503 + 5vg — 502 + 502 — 5vg + 504 — 5v2 + 503 — Svg — 4vd + v3 + v + vg
5 3 5 2 3 1 2 3 4 5
+vg — Sv3g + Svip — Svyq + Svyq + dvip — Vi — UIp — Up — V7))

|Hy; H, G) = (1/4\/30)(—51)% + 5v% — 5vg + 5v§1 + 5v§ — 5v§ + 41& — v‘% — v‘:’; — vﬁ — vi’ — 4v%

+v§+vg+vg+vg+5vg—5vg—4v%+v$+v§+v?+v;’+5vg—5vg—5vg
4 2 4 1 2 3 4 5 2 5
+ Svg + 5vip — Svig + dvyy — viq — Vi — Vi1 — viq — Svip + 5v7y)

6. Supplementary material

A print-out of the complete symmetry-adapted functions for tlag r@olecule is
available upon request.
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